ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

International Journal of Heat and Mass Transfer 50 (2007) 2634-2642

International Journal of

HEAT ..« MASS
TRANSFER

www.elsevier.com/locate/ijhmt

Solution of radiative heat transfer in graded index media
by least square spectral element method

JM. Zhao, L. H. Liu~*

School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, People’s Republic of China

Received 22 February 2006; received in revised form 26 September 2006
Available online 20 February 2007

Abstract

Least square spectral element method based on discrete-ordinates equation is extended to solve multidimensional radiative heat trans-
fer problems in semitransparent graded index media. Chebyshev polynomial is employed as expansion set for the spectral element dis-
cretization. Five various test problems were taken as examples to verify the least square spectral element formulation for solving radiative
heat transfer in semitransparent graded index media. The predicted distributions of temperature and radiative heat flux are determined
by the least square spectral element method and compared with data in the references. The results show that the least square spectral
element method has good accuracy for solving multidimensional radiative heat transfer problems in semitransparent graded index media.
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1. Introduction

Due to the structural characteristics of a material or a
possible temperature dependency, the refractive index of
a media may be a function of spatial position. The radia-
tive heat transfer in semitransparent media with graded
index is of great interest in thermo-optical systems, and
has evoked the wide interest of many researchers. In graded
index media, the ray goes along a curved path determined
by the Fermat principle. As a result, the solution of radia-
tive transfer in a graded index media is more difficult than
that in a uniform index media. Curved ray-tracing tech-
nique was developed and widely used to solve this kind
of problem, such as, the ray-tracing techniques presented
by Abdallah and coworkers [1-3], Huang et al. [4,5], and
Liu and coworkers [6,7]. For the radiative transfer prob-
lems in multidimensional graded index media, the curved
ray tracing is very difficult and complex, and hence the
methods based on the curved ray-tracing techniques were
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mainly limited to one-dimensional radiative transfer prob-
lems. Recently, to avoid the complicated computation of
curved ray trajectories, Liu [8] deduced the three-dimen-
sional radiative transfer equation within graded index
media in Cartesian coordinate system and developed a
finite volume method (FVM) for solving multidimensional
radiative transfer problems in graded index media. Based
on the radiative transfer equation deduced in Ref. [8],
Liu and coworkers [9] developed the finite element method
(FEM) for multidimensional graded index media. These
non-ray-tracing methods avoid the complicated and time-
consuming computation of curved ray trajectory and
can be easily used to solve multidimensional problems.
However, these methods just offer s-convergence, i.e. the
convergence gained by reducing the element size 4 or A-
refinement, as a result, re-meshing or refining have to be
done in order to gain the wanted accuracy.

Spectral element approximation, originally proposed by
Patera [10] for the solution of fluid problem, combines the
advantages of spectral approximation with p-convergence
and finite element approximation with /-convergence and
the flexibility to deal with complex domain. The p-conver-
gence of spectral element approximation makes it more


mailto:lhliu@hit.edu.cn

J.M. Zhao, L.H. Liul International Journal of Heat and Mass Transfer 50 (2007) 2634-2642 2635

Nomenclature

h element size, Lagrange interpolation polynomial
defined in Eq. (13)

H matrix defined in Eq. (22)

1 radiative intensity

L, blackbody radiative intensity

1 approximate radiative intensity

i,j,k  unit vectors into the x-, y- and z-directions,
respectively

L slab thickness, side length of rectangular media

n inward normal vector

n refractive index

Ny total number of elements

Nesor  number of solution nodes per element

Nqol total number of solution nodes

P polynomial order

q radiative heat flux (W/m?)

r vector of spatial position

S vector defined as s; = —isin ¢ + jcos ¢

S variable defined in Eq. (7)

T temperature (K)

T, media temperature (K)

V solution domain

Vi standard element

W weight function

X cartesian coordinate vector defined in solution
domain

x,y,z cartesian coordinates defined in solution domain

Greek symbols
p variable defined in Eq. (7)

Xos %, variable defined by Egs. (8) and (9), respectively
0 variable defined in Eq. (14)

&y wall emissivity

¢ global basis (shape function)

¢° elemental basis function defined on element e
(0] scattering phase function

@ azimuthal angle

Ao azimuthal angle step

Ka absorption coefficient (m ")

Ks scattering coefficient (m™")

wmn g ogmt- direction cosine of the direction (m, n)

0 polar angle
AO polar angle step

o Stefan-Boltzmann constant (W/m? K*)

T optical thickness, 1, = (K, + Ks)L

Q. Q'  vector of radiation direction, Q = iy + jy + k¢

Q solid angle

¢ Cartesian coordinate vector defined in standard
element

{,y,¢ Cartesian coordinates defined in standard ele-
ment

w single scattering albedo, o = K5/ (ks + Ks)

3 first-order linear differential operator defined in
Eq. (20)

/] two-dimensional spectral nodal basis defined on
v

V, Vy grgdient operator respect to x, Vy = i%—kj%—i—
k2

\ graazldient operator respect to {,V, = ia%"’ iZ+
k2 ’

Subscripts

e element index

J,p solution node index

w value at wall boundary

Superscripts

1,2 denote one- and two-dimensional, respectively

e function defined on element e

mym’ ;n,n';m+1/2,n+1/2 angular direction of radia-
tion

flexible and the solution accuracy be easily improved by
just increasing the order or p-refinement of spectral
approximation without refining or re-meshing the geomet-
ric mesh. As a result, spectral element approximation is
more effective than spectral approximation and finite ele-
ment approximation. Spectral element method has been
successfully applied in computational fluid dynamics and
heat transfer [10-14], and hence it’s a natural idea to extend
this method to solve radiative transfer problem. Recently,
for radiative transfer within uniform index media, Pontaza
and Reddy [15] proposed least square /p finite element for-
mulations for solving one-dimensional radiative transfer
equation (RTE). Considering RTE is a special case of the
general convection-diffusion equation and the presence of
convection term may cause non-physical oscillatory of
solutions [16], Zhao and Liu [17] developed a least square

spectral element method (LSSEM) for solving multidimen-
sional radiative transfer problems in uniform index media.

In this paper, we extend the LSSEM approach to solve
multidimensional radiative transfer problems in graded
index media based on the discrete-ordinates equation. Five
various test cases of radiative heat transfer in semitranspar-
ent media are taken to verify the performance of the
method.

2. Mathematical formula
2.1. Discrete-ordinates equation of RTE
In the Cartesian coordinate system, radiative heat trans-

fer equation in a multidimensional graded index media can
be written as [8]
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For the opaque, diffuse emitting and reflecting wall, bound-
ary condition is given by

1_ W
I(ry, Q) = n’eyIy(ry) + ¢

/ I(ry, @), - Q[de2,
ny-Q' <0

(2)
where I(r, Q) is the radiative intensity, which is a function
of spatial position r and direction Q =iu + jy + K&, u, 1,
and ¢ are the direction cosine of the local tangent vector
of ray trajectory along the Cartesian coordinates x, y,
and z directions, respectively, Iy,(r) is the blackbody radia-
tive intensity at the temperature of the media, n is the
refractive index of media, which is a function of spatial
position, x, and x, are the absorption and the scattering
coefficients, respectively, ®(€', Q) is the scattering phase
function from the incoming direction €' to the outgoing
direction Q, 0 and ¢ are the polar and the azimuthal
angles, respectively, and s; is the vector defined by s; =
—isin @ + jcos ¢.

Eq. (1) differs from the radiative transfer equation in
uniform index media. It contains two angular redistribu-
tion terms. For the discretization of the angular redistribu-
tion terms, piecewise constant angular (PCA) quadrature
and step scheme is employed in Ref. [9]. In the PCA quad-
rature approach, the total solid angle is divided uniformly
in the polar 0 and azimuthal ¢ directions. In this paper, we
use the same discretization method of angular redistribu-
tion terms employed in Ref. [9]. The discrete polar and
azimuthal angles are discretized as follows:

0" =m—1/2)A0, m=1,2,. 0, (3a)
"=m—-1/2)Ap, n=12,...,N,, (3b)
where Af = /Ny and Ap = 271/N¢ are the steps for the
discretization of polar and azimuthal angles, respectively,
Ny and N, correspondingly denote the numbers of divi-

sions. For each discrete direction (m, n), the corresponding
weight is

T

Wi = cos 0"/ — cos 0"1/2 (4a)
W= @I g1, (4b)
where

0" = (0" + 0 )2, (5a)
"= (9" + ¢")/2. (5b)

By using the PCA quadrature and step scheme for angular
redistribution terms in Eq. (1), the discrete ordinates equa-
tion of radiative transfer for multidimensional problems in
graded index media can be expressed as

o alm.n a m,n a m,n

T T

B =5, (6)

where
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0 0
1 1
+ — max (i 2 0) + max(—;{’q’)"""/z,O) + (Ka + Ks),
rp (/>
(7a)
K Ng Ny
S’nn()—nKIb+4 Zzlm nq)m nmn‘/‘/ﬂW
m'=1 n'=
1 m n 1 m— n —_
+_mmax(_xg+l/2: ,0)1m+1'" S de(/Cg 1/2, O)Im 1n
w, W

0 H

max(ymn 1/2 O)Imn 1
(70)

The recursion formula for /’"“/ > and ;{’;’”“/ 2 are giving as
following [9]:

1 1
4 maX(_yl;17n+l/270)]m.n+l 4+
Wo v Wo

m+1/2.n m—1/2.n — ng _a(ég) . @ 8
Lo o Sn0” | 00 n | g’ (8a)
/{1}/271 _ Xi)\/()-%—l/Z,n _ 07 (gb)
/m n+1/2 /mn 12 _ WZ’ asl vn (93)

‘0 ‘0 sin0" [0¢p 1 | g gni’

1 Vn

m1/2 __ . mNy+1/2 __ i-— ). 9b

1o =1y =g (J n) (9b)

Eq. (6) with boundary condition given by Eq. (2) is solved
for each discrete direction. It can be seen that both " (r)
and S"™"(r) contain part of angular redistribution terms,
this is different from the discrete-ordinates equation of
radiative transfer in uniform media. Therefore, source term
updating is always needed during the solution process.

2.2. Spectral element approximation

Spectral element approximation combines the advanta-
ges of spectral approximation with p-convergence and finite
element approximation with s-convergence. In spectral ele-
ment approximation, the solution domain ¥V is decomposed
into N, non-overlapping clements V., and any function
defined over the solution domain is approximated by its
spectral expansion over each element. The spectral basis
are originally defined on standard element V' and trans-
formed to each general element V. to build elemental basis
functions ¢; over V.. With Lagrange nodal basis expansion,
the spectral element approximation can be formulated in a
form as in finite element approximation. Considering the
elemental nodal basis as shape function, the radiative inten-
sity can be approximated over element V, by

Nesol

Zlmne (10)

where I7""° denotes the radiative intensity at the ith node of
element V., ¢;(r) is Lagrange nodal basis function defined
on element V., and N, denotes the number of solution
nodes per element.

Aim.,n e
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Using globally assemble procedure as in finite element
method, nodal basis functions on each element around
node j can be assembled as the global basis of node j,
denoted by ¢; The globally approximation intensity /™"
can be written as

Nsol

1" (x Zl’"”(ﬁ (11)

where /7" denotes the radiative intensity at solution node j

and N, is the total number of solution nodes over the
solution domain.

Chebyshev and Legendre polynomials are two most
commonly used expansion sets in spectral element method
for non-periodical problems. In this paper, Chebyshev
polynomial is employed to build the elemental nodal basis
functions. The N — 1 order nodal basis functions defined
on standard element V! = [~1, 1] are Lagrange interpola-
tion polynomials through N Chebyshev—Gauss—Lobatto
points:

i —1
cj=—cos(jv_1n)7 J=1. N, (12)

By using barycentric interpolation formula, the Lagrange
interpolation polynomials can be written as [18]

wi

h(Q) = =i, (13)
it

where
1/2, j=1lorj=N,

. (14)
1, otherwise.

wy=(=1)"5;, ;= {
The barycentric interpolation formula is considered to be
accurate and more computationally stable. This is demon-
strated in Ref. [18-20].

Multidimensional spectral nodal basis function can be
built with tensor product of the one-dimensional spectral
nodal basis function %;({). For example, two-dimensional
spectral nodal basis function 7,,; ;) defined on standard ele-
ment V2 = [-1,1] x [~1,1] are given by

hm(,,)(C,V) :h,(C)hl('})), 17]: 177N7 (15)
where m(i, j) is a index map function defined as
(G— DN +1, (16)

which gives a index map from two-dimensional index to
one-dimensional index, thus makes the formulation de-
scribed above coherent for both one- and two-dimensional
cases. Similar index map can be defined for three-dimen-
sional case. The nodal basis defined on general element
V2 and on standard element V7 are related by

(rbren(l,j)(x(C)) = hfn([J)(C)? X€Q,L€Vy, (17)
and with derivative relation:

V"('Zsfn(i,j) (X(C)) IVC m(ij) (C)’ (18)

m= m(i7j) =

where x = x({) defines the coordinate transform from V7
to V2, Vx and V, are the gradient operator respect to x
and ¢, respectively, and J is the Jacobian matrix. In this
paper, the same transformations from standard element
to general element for one-dimensional and two-dimen-
sional basis functions are employed as in Ref. [17].

2.3. Discretization and implementation

Substituting Eq. (11) into Eq. (6), weighting by W,(r)
and then integrating over the spatial solution domain yields

Nsol

>0 [ om0y

:/E”””(r)Wj(r)dV, j=1,..  Na, (19)
4

o—m n

where operator 3™" is defined as

am.n m,n a m.n a n7n

I =u""—+n ——I—f
Ox

Taking 3”[¢,(r)] as the weight function, we obtain the least

square scheme of spectral element method discretization,

which forms the following discretized system of linear

equations:

mmupym,n __ m.,n
K" = H

+ B (r). (20)

(21a)

where the elements of matrix K™ and H™" are expressed as

0 0 0
Kr?l,n — /V (Hm,n ¢p(r) + ',Im,n ¢P( )+ imn ¢ ( )

i . B, 0)

y (Hm" a(%];l') n 1/,'"’" a(f)a/)fr) m S a¢ (l') ﬁm n( )d)j (r)) dV
(22a)

H;ﬂn /V SVﬂVl( )(Hm,ﬂ%:xfr)_‘_ nm,”%‘)gr)
_’_gumna a( ) ﬁmn( )¢/(r)) dar. (22b)

Boundary conditions must be imposed before solving Eq.
(21). Here, collocation technique is used to impose the
boundary condition given by Eq. (2). For the Dirichlet
boundary condition, boundary operator can be considered
as an identity operator, and it is an identity matrix in dis-
cretized form. To impose the boundary condition, we only
need to replace the row of stiff matrix K”" with index of
boundary node by the corresponding row of identity ma-
trix. At the same time, replace the corresponding row of
the vector H™" by radiation intensity of the boundary
node. Thus for each node j on the inflow boundary of
direction m described by Eq. (2), this algorithm can be writ-
ten as

L, j=p
K™ = ] , (233)
» { 0, j#p
HI =, (23b)

The discretized linear equation of each direction given in
Eq. (21) can be solved by many methods. In this paper, it
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was solved by the direct method direction by direction.
Because the source term of the discrete-ordinates equation
in direction Q™" contains the radiative intensities of the
other directions, global iterations are necessary to update
the source term. The implementation of the least square
spectral element method can be carried out according to
the following routine:

Step 1. Mesh the solution domain with quadrilateral
elements.

Step 2. Choose the order of Chebyshev polynomial to
build elemental basis function and generate the
solution nodes for each element with Gauss—
Chebyshev—Lobatto points.

Step 3. Give initial value for radiative intensity and begin
the source term update loop.

Step 4. Begin loop each angular direction for m =
l,...,Npand n=1,...,N,, build the basis func-
tion for each element V. from standard element
V., integrate on each element and then assemble
to get global stiff matrix K™", and H™".

Step 5. Impose boundary condition according to the algo-
rithm described by Eq. (23).

Step 6. Solve the linear equation (21) to get the radiative
intensity on each solution nodes for angular direc-
tion Q™" then end angular loop.

Step 7. Terminate the iteration process if the stop criterion
is satisfied. Otherwise go back to Step 4.

In this paper, the maximum relative error 10~* of radi-
ative intensity is taken as stopping criterion for iteration.

3. Results and discussion

Based on the formulation described above, a computer
code capable of modeling multidimensional radiative trans-
fer problems in a graded index media has been developed.
p-Convegence characteristics of the least square spectral
element method for radiative transfer equation in grade
index media are studied. Grid refinement studies were per-
formed for solutions to ensure that the solutions are inde-
pendent of grid size. In the following discusses about
spatial discretization effects, the angular grids are refined
enough to ensure that the results are independent of the
angular discretization. Five test problems are examined
to verify the performance of the method described above.
The test cases are selected because exact, or at lease very
precise, solutions of the radiative transfer equation exist
for comparison with the LSSEM solution. All the compu-
tation is executed on a computer with CPU of AMD
Athlon 2200 + (1.8 GHz) and 512 M RAM. In order for
quantitative comparison between results obtained by
LSSEM (denoted as Rysspm(x)) and the exact or quasi-
exact results (denoted as Rgy.(x)) in references, the inte-
gral averaged relative error is defined as following:

Integral averaged relative error

J |RussEm (X) — Rexact (x)]dx

=100 x
f|RExact(x)|dx

(24)

3.1. Case I: radiative equilibrium in non-scattering media
with linear refractive index

The least square spectral element method is applied to a
radiative equilibrium problem in a one-dimensional semi-
transparent slab bounded by black walls. The temperatures
of boundary walls are imposed as 7, = 1000 K and
T; = 1500 K at x =0 and x = L, respectively. The refrac-
tive index of the media within the slab varies linearly with
the axis coordinate as n(x) = 1.2+ 0.6x/L. The media
within the slab is non-scattering. This case has also been
used as a test case by Huang et al. [4] using the pseudo
source adding method. The temperature distributions
within the media are presented in Fig. 1 for three values
of slab optical thicknesses, namely, 7; = 0.01, 7, = 1.0
and 1; = 3.0, respectively. Here five elements are used with
fourth-order polynomial for space decomposition, and the

1500

1400 |

1300

T(K)

« Ref. [4]

1200 ® | SSEM i
]
1100 " 1 L 1 L 1 L 1 L
00 02 04 06 08 1.0
x/L

Fig. 1. Temperature distributions in the case of n(x) = 1.2+ 0.6x/L,
g =¢ =1and o =0.

10—

10%E &

Integral averaged relative error
-
o
L
T

2 4 6 8 10
Polynomial order p

Fig. 2. p-Convergence characteristics of LSSEM for solution of temper-
ature distributions between slabs filled with linear refractive index for
different optical thickness.
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total solid angle is subdivided into Ny = 20. The computa-
tional time are about 2, 5, and 9 s for 7; = 0.01, 1.0, and
3.0, respectively. As shown in Fig. 1, the LSSEM results
are in good agreement with the results obtained by using
the pseudo source adding method. The maximum integral
averaged relative error based on the data in Ref. [4] is less
than 0.8%.

The effects of polynomial order p on the convergence
characteristics of the LSSEM in solving the temperature
distributions in linear refractive index media for three val-
ues of optical thicknesses, namely, 7, = 0.01, 1.0 and 3.0,
are studied, respectively. Here, two spectral elements are
used. Because there is no analytical solution, the results
obtained by 15 order polynomial are taken as benchmark
solutions for comparison. The integral averaged relative
errors are plotted in Fig. 2 for various polynomial orders.
An exponential decay function, 0.0lexp(—0.8p), is also
plotted for comparison. As can be seen from Fig. 2, the
convergence rate of LSSEM is very fast and approximately
follows the exponential law.

3.2. Case 2. radiative equilibrium in non-scattering media
with sinusoidal refractive index

In this case, non-linear refractive index is studied. The
temperatures of boundary walls are imposed as
Ty = 1000 K and 7; = 1500 K at x = 0 and x = L, respec-
tively. The refractive index of media within the slab varies
sinusoidally with the axis coordinate as n(x) = 1.8—
0.6sin(nx/L). The media within the slab is non-scattering
and the slab optical thickness is 7; = 1.0. The least square
spectral element method is applied to this case with
fourth-order polynomial and five elements for spatial
decomposition. Fig. 3 shows the temperature distributions
within the media for two different conditions of wall emis-
sivity, namely g = ¢ = 1 and ¢ = ¢ = 0.7, respectively.
As shown in Fig. 3, the LSSEM results are in good agree-
ment with the results obtained by using the pseudo source
adding method [21]. The maximum integral averaged rela-
tive error is less than 0.4%.

Ref. [21]
e [SSEM

00 02 04 06 08 1.0
x/L

Fig. 3. Temperature distributions in the case of n(x) = 1.8 — 0.6sin(nx/L),
7, =1and v =0.

3.3. Case 3: isotropically scattering in a gray enclosure

We consider a square enclosure filled with isotropically
scattering gray media. The single scattering albedo of
media is @ = 1.0. The lower wall is kept hot, which temper-
ature is denoted as T, but all other walls and the media
enclosed by the square enclosure are kept cold (0 K). The
optical thickness based on the side length L(L = 0.1 m) of
square enclosure is 7, = (i, + #;)L = 0.1. The media tem-
perature, the absorption coefficient and the scattering coef-
ficient of the media enclosed by the square enclosure is
uniform, but the refractive index is a linear function of spa-
tial position as following:

n(x,y)=142(x+y)/L. (25)

As shown in Fig. 4, the square is uniformly discretized into
many rectangular elements. The LSSEM is applied to solve
the dimensionless net radiative heat fluxes on the lower
wall, in which fourth-order polynomial is used. The total
angular space is subdivided into Ny x N, = 10 x 21 con-
trol solid angles. The dimensionless net radiative heat

Fig. 4. Uniform decomposition and spectral nodal distribution of square
enclosure (with 36 elements).

10 T T T T
FVM[9] £,=10
8 0 LSSEM,Ny=4
O LSSEM,Ny=16
6 ® LSSEM, Ny =36 |

00 02 04 06 08 1.0
x/L

Fig. 5. Dimensionless net wall radiative heat flux on the bottom wall of a
gray enclosure filled with a purely scattering media.
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fluxes g,,, /0T, on the bottom wall are presented in Fig. 5
by using three different spatial decomposition schemes,
namely, 4, 16, and 36 elements, and compared to the results
obtained from the FVM presented in Ref. [9]. The LSSEM
results agree with those of FVM very well. No observable
difference could be detected between the results of LSSEM
and FVM when they are presented in graphical form. Grid
refinement test show that all three decomposition schemes
give accurate results, which demonstrate grid size indepen-
dence of the method. Because of asymmetric distribution of
refractive index, the profiles of dimensionless net radiative
heat flux are asymmetric, which are different from the case
of uniform refractive index [22].

3.4. Case 4: anisotropically scattering in a black enclosure

In this case, the radiative heat transfer in a square enclo-
sure with black walls and an anisotropically scattering
media is studied. The side length of square enclosure is
L =0.1 m. The media is kept hot, but the temperatures
of all the boundary walls are kept as 0 K. In the following
analysis, the linear phase function #(Q', Q) =1+Q' - Qs
used. The media temperature T, the absorption coefficient
K,, and the scattering coefficient x, of the media enclosed
by the square enclosure is uniform, while the refractive
index is a linear function of spatial position the same as
in Case 3 (Eq. (25)). The optical thickness based on the side
length L of square enclosure is 1, = (k, + x5)L = 0.1.

The LSSEM is applied to this case, in which fourth-order
polynomial is used. The total angular space is subdivided
into Ny x N, =10 x 21 control solid angles. The square
enclosure is uniformly decomposed into 36 elements as
shown in Fig. 4. The dimensionless net radiative heat fluxes
qwl/aTg on the lower wall are shown in Fig. 6 for three dif-
ferent values of single scattering albedo w, namely 0.0, 0.5
and 0.9, and compared to the results obtained from FVM
presented in Ref. [9]. By comparison, it can be seen that
the LSSEM presented in this paper has a good accuracy
in solving the radiative heat transfer in graded index media
with anisotropically scattering. Even in the case of w = 0.0,

0.6 T T T T

FVM [9] o %o
e LSSEM %

00 02 04 06 08 1.0
x/L

Fig. 6. Dimensionless net wall radiative heat flux on the bottom wall of a
black enclosure filled with anisotropically scattering media.

Fig. 7. Non-uniform decomposition and spectral nodal distribution in a
square enclosure (with 36 elements).

0.6 T T T T T T T T

— @ — Uniform

O Non-uniform

0.0 OmOA I
00 02 04 06 08 10

x/L

Fig. 8. Comparison of dimensionless net wall radiative heat flux obtained
using the uniform and the non-uniform decomposition schemes.

the maximum integral averaged relative error is less than
5%. LSSEM is of p-convergence, and is expected to be more
accurate. In FVM, the step scheme is often used for spatial
discretization, therefore FVM is of low-order convergence,
and the results of FVM suffer from false scattering.

To check the performance of LSSEM on skewed grid, as
shown in Fig. 7, a non-uniform decomposition is consid-
ered. Fig. 8 shows the dimensionless net radiative heat
fluxes ¢,/ aTg on the lower wall obtained using the uni-
form and the non-uniform decomposition schemes. It can
be seen that the difference of radiative heat flux obtained
using the uniform and the non-uniform decomposition
schemes is very little. The maximum integral averaged rel-
ative difference of these two results based on the solution
from uniform grid is less than 0.05%.

3.5. Case 5: anisotropically scattering with non-linear
refractive index

We consider radiative heat transfer in a square enclosure
with black walls and filled with anisotropically scattering
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16 T T T T

14 .
e MC[23]

12 LSSEM

Fig. 9. Dimensionless net wall radiative heat flux on the bottom wall of a
black enclosure filled with anisotropically scattering media of non-linear
refractive index.

gray media of non-linear refractive index. The temperature
of left wall is denoted as Ty; and kept as 1000 K, but all
other walls and the media enclosed by the square enclosure
are kept as 0 K. The optical thickness based on the side
length L of square enclosure is t;, = (k, + x5)L = 1. The
linear scattering phase function ®(Q', Q) =1+Q'-Q is
used. The media temperature, the absorption coefficient
and the scattering coefficient of the media enclosed by the
square enclosure is uniform. The refractive index is a func-
tion of spatial position as

0.5

n(x,y) = 5 [1 ~0.9025 (iﬂ . (26)

LSSEM is applied to solve the dimensionless net radiative
heat fluxes on the lower wall for = 0 and o = 0.5, respec-
tively. The square enclosure is divided uniformly into 16
uniform quadrilateral elements and fourth-order polyno-
mial is used for spectral approximation. The total angular
space is subdivided into Ny x N, = 18 x 36 control solid
angles. The dimensionless net radiative heat fluxes
¢w1/0T%, on the bottom wall are presented in Fig. 9 and
compared to the results obtained from Monte Carlo (MC)
simulation in Ref. [23]. It can be seen from Fig. 9 that the
LSSEM results agree good with those of MC. The maxi-
mum integral averaged relative error is less than 3%. No
obvious ray effects and false scattering are observed.

4. Conclusions

To avoid the complicated computation of curved ray
tracing, the least square spectral element method based
on discrete-ordinate equation is extended to solve multi-
dimensional radiative heat transfer problem in semitrans-
parent graded index media. Chebyshev polynomial is
employed as expansion set for the spectral element discret-
ization. The p-convergence characteristics of the least
square spectral element method are studied for radiative
transfer equation in grade index media. The convergence
rate is very fast and approximately follows the exponential

law. Five various test problems were taken as examples to
verify the least square spectral element formulation. The
predicted distributions of temperature and radiative heat
flux are determined by the least square spectral element
method and compared with data in the references. The
results show that the least square spectral element method
has good accuracy for solving multidimensional radiative
heat transfer problems in semitransparent graded index
media.
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